

Qui suis-je?

- Développeuse en informatique, robotique, analyse de données 3D
- Animatrice bénévole à l'ACoLab

- Mise en commun de machines
 - Imprimante 3D, découpeuse laser, table de fraisage...
 - Atelier bois
- Apprentissage partagé
- Initiations

Qui êtes vous ?

Tour de table :

- Qu'espérez vous apprendre aujourd'hui ?
- Avez vous des connaissance en électronique ou informatique ?

Arduino : qu'est ce que c'est ?

- Carte électronique programmable
- Pour l'apprentissage et le prototypage
- Open source et open hardware

Arduino : qu'est ce que c'est ?

- 'Form factor' qui permet les extensions (shields)
- Editeur de code
- librairies

		<u>@</u>
ТР2		X
delay(3000);	//durée 3 secondes	
<pre>buttonState = digitalRead(if ((buttonState != memoir)</pre>	buttonPin); //lecture de l'ét e) && (buttonState == HIGH))	at du bouton //Comparaison de l'état du bouton po //si l'état du bouton est différent //stocké dans "mémoire" (=LOW), alor
{	. //fau wast ótaist	
digitalWrite(orange, HIG	H): //feu orange allumé	
delay(1000);	//durée 1 seconde	
digitalWrite(orange, LOW); //feu orange éteint	
digitalWrite(rouge, HIGH); //feu rouge allumé	
digitalWrite(p_vert, HIG	H); //feu piéton vert allumé	
digitalWrite(p_rouge, LO	N); //feu piéton rouge éteint	

TinkerCAD

- Modélisation 3D
- Simulateur Arduino
- Simulateur de code

Hello, world ! Objectif : faire clignoter une led

Hello, world !

Brancher l'arduino au PC

Si la carte n'est pas détectée automatiquement, installer le driver CH340G

Lancer l'IDE Arduino et sélectionner la carte Ouvrir file \rightarrow examples \rightarrow 01. Basics \rightarrow Blink

Verify puis upload

Hello, world !

```
void setup() {
  // initialize digital pin LED_BUIL
  pinMode(LED BUILTIN, OUTPUT);
// the loop function runs over and o
void loop() {
  digitalWrite(LED BUILTIN, HIGH);
  delay(1000);
  digitalWrite(LED BUILTIN, LOW);
  delay(1000);
```

Exercice : Changer la fréquence de clignotement

Circuit électrique

Objectif : créer un simple circuit led + résistance

Schéma électrique d'une led

.

La platine de prototypage

Calculer la résistance

- de la led = petite patte

Calculer la résistance

- Ualim = 5V
- Ud = 2V
- I = 20mA

Faire le circuit Calculer la résistance

- Ualim = 5V
- Ud = 2V
- I = 20mA
- $R = 150\Omega$ (valeur minimale)

		2	20 Ω ± 5	%	
Calculer		9			
résistanc	BAND 1	BAND 2	MUL.	TOL.	•
	0	0	1Ω		
	1	1	10Ω	± 1%	
	2	2	100Ω	± 2%	
	3	3	1ΚΩ		
	4	4	10ΚΩ		
	5	5	100ΚΩ	± 0.5%	
	6	6	1MΩ	± 0.25%	
	7	7	10ΜΩ	± 0.10%	
	8	8		± 0.05%	
	9	9			
			0.1	± 5%	
			0.01	± 10%	

Commander par l'Arduin const int LED_PIN = 8;

Changer le câblage pour alimenter le circuit sur une pin (par ex la 8) Modifier le code pour faire clignoter la led

```
// the setup function runs once w
void setup() {
  // initialize digital pin LED B
// the loop function runs over an
void loop() {
    digitalWrite(LED_PIN, HIGH);
    delay(100);
    digitalWrite(LED_PIN, LOW);
    delay(1000);
```


Ajouter un bouton

()3)

Et ne clignoter que quand il est appuyé

Lire un bouton

Ajouter un bouton poussoir

Le bouton a 4 pattes connectées 2 à 2

Utiliser l'ohmmètre pour déterminer qui est connecté à qui

Faire le circuit pour pouvoir lire la valeur du bouton

Résistance de pull-down

Dans le code, créer une variable pour lire le bouton Faire clignoter la led quand le bouton est enfoncé


```
const int LED_PIN = 8;
const int BUTTON_PIN = 10;
```

```
// the setup function runs once when you
void setup() {
    // initialize digital pin LED_BUILTIN
    pinMode(LED_PIN, OUTPUT);
    pinMode(BUTTON_PIN, INPUT);
```

```
// the loop function runs over and over
void loop() {
    if(digitalRead(BUTTON_PIN) == HIGH){
        digitalWrite(LED_PIN, HIGH); // tur
        delay(100); //
        digitalWrite(LED_PIN, LOW); // tur
        delay(1000); //
```

Lire un capteur analogique

Réagir à la luminosité

Lire un capteur

Partir de l'exemple 03. Analog → AnalogInput Lecture du capteur Remise à l'échelle (fonction map) Debug avec Serial

int	sensorPin = A0;	11	select	the	input	pin	for th	e poten	tiom
int	ledPin = 13;	//	select	the	pin fo	or th	e LED		
int	<pre>sensorValue = 0;</pre>	//	variabl	le to	store	e the	value	coming	fro

```
void setup() {
```

```
// declare the ledPin as an OUTPUT:
pinMode(ledPin, OUTPUT);
Serial.begin(9600);
```

void loop() {

```
// read the value from the sensor:
sensorValue = analogRead(sensorPin);
Serial.print("valeur lue ");
Serial.println(sensorValue);
```

```
int convertedValue = map(sensorValue, 0, 150, 1000, 200);
Serial.print("valeur convertie ");
Serial.println(convertedValue);
```

```
// turn the ledPin on
digitalWrite(ledPin, HIGH);
// stop the program for <sensorValue> milliseconds:
delay(convertedValue);
// turn the ledPin off:
digitalWrite(ledPin, LOW);
// stop the program for for <sensorValue> milliseconds:
delay(convertedValue);
```

∞ J	Analo	gInput Ar	duino II	DE 2.0.2			
File	Edit	sketch	Tools	Help			
		→ 🕑		Auto Format	Ctrl+T		
Ē		Analoging 43 44	:	Manage Libraries Serial Monitor C	Ctrl+Maj+l Ctrl+Maj+M		
Ŀ.		45 46 47	:	Board: "Arduino Uno"		•	150, 1000,
	h	48 49	(Port: "COM4" Get Board Info		۲	
÷	>	50 51 52 53		WiFi101 / WiFiNINA Firmware Updater Upload SSL Root Certificates			liseconds:
C	2	54 55 56		Programmer Burn Bootloader		۲	millisecon
		57	de	<pre>lay(convertedValue);</pre>			
		58 59	}				
		Output	Serial	Monitor ×			

```
Message (Enter to send message to 'Arduino Uno' on 'COM4')
```

```
valeur lue 0
valeur convertie 1000
valeur lue 0
valeur convertie 1000
valeur lue 0
valeur convertie 1000
valeur lue 0
```

.

5 Faire tourner un servomoteur

Avec une position maximale réglable

Faire tourner un servomoteur

Partir du circuit déjà fait

- Noter la broche PWM
- Utiliser le moniteur série pour voir la position
- Brancher un potentiomètre
- Créer une variable qui va de 0 à 180 en fonction du potentiomètre Ne tourner que jusqu'à cette valeur

Et ensuite on fait quoi?

À vous de choisir !

Liens utiles

En français https://www.arduino.cc/ https://arduinogetstarted.com/fr/arduino-language-reference http://fantaisyland.fr/calcul-resistance-led/ https://plaisirarduino.fr/moniteur-serie/ http://raspblog.fr/arduino-utilisation-dun-ecran-lcd https://www.arduino-france.com/tutoriels/comment-debuter-arduino/ https://www.generationrobots.com/fr/185-cartes-arduino

En anglais https://www.makerguides.com/servo-arduino-tutorial/ MERCI

À vous de jouer !

Pour trouver de l'aide : Les forum en ligne Le fablab près de chez vous ! https://forum.acolab.fr/

CREDITS: This presentation template was created by <u>Slidesgo</u>, including icons by <u>Flaticon</u>, and infographics & images by <u>Freepik</u>

Please keep this slide for attribution

